Image-based detection and targeting of therapy resistance in pancreatic adenocarcinoma

Image-based detection and targeting of therapy resistance in pancreatic adenocarcinoma
Raymond G. Fox, Nikki K. Lytle, Dawn V. Jaquish, Frederick D. Park, Takahiro Ito, Jeevisha Bajaj, Claire S. Koechlein, Bryan Zimdahl, Masato Yano, Janel L. Kopp, Marcie Kritzik, Jason K. Sicklick, Maike Sander, Paul M. Grandgenett, Michael A. Hollingsworth, Shinsuke Shibata, Donald Pizzo, Mark A. Valasek, Roman Sasik, Miriam Scadeng, Hideyuki Okano, Youngsoo Kim, A. Robert MacLeod, Andrew M. Lowy & Tannishtha Reya. 2016.
Nature DOI: 10.1038/nature17988. PubMed | PDF |

ABSTRACT

Pancreatic intraepithelial neoplasia is a pre-malignant lesion that can progress to pancreatic ductal adenocarcinoma, a highly lethal malignancy marked by its late stage at clinical presentation and profound drug resistance1. The genomic alterations that commonly occur in pancreatic cancer include activation of KRAS2 and inactivation of p53 and SMAD4 (refs 2, 3, 4). So far, however, it has been challenging to target these pathways therapeutically; thus the search for other key mediators of pancreatic cancer growth remains an important endeavour. Here we show that the stem cell determinant Musashi (Msi) is a critical element of pancreatic cancer progression both in genetic models and in patient-derived xenografts. Specifically, we developed Msi reporter mice that allowed image-based tracking of stem cell signals within cancers, revealing that Msi expression rises as pancreatic intraepithelial neoplasia progresses to adenocarcinoma, and that Msi-expressing cells are key drivers of pancreatic cancer: they preferentially harbour the capacity to propagate adenocarcinoma, are enriched in circulating tumour cells, and are markedly drug resistant. This population could be effectively targeted by deletion of either Msi1 or Msi2, which led to a striking defect in the progression of pancreatic intraepithelial neoplasia to adenocarcinoma and an improvement in overall survival. Msi inhibition also blocked the growth of primary patient-derived tumours, suggesting that this signal is required for human disease. To define the translational potential of this work we developed antisense oligonucleotides against Msi; these showed reliable tumour penetration, uptake and target inhibition, and effectively blocked pancreatic cancer growth. Collectively, these studies highlight Msi reporters as a unique tool to identify therapy resistance, and define Msi signalling as a central regulator of pancreatic cancer.

SEE ALSO

  • Leading Edge
    Targeting Resistance.
    Jiaying Tan (2016) Cell
    PubMed | PDF
  • Research Highlights
    Pancreatic Cancer: A new model for imaging tumour progression.
    Ian Dickson (2016) Nature Reviews Gastroenterology & Hepatology
    PubMed