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Abstract

In many cancers, such as Chronic Myelogenous Leukemia (CML), pancreatic, and colorectal 

cancer, long delays exist between the initiation of the disease and the onset of debilitating 

symptoms. The early stages of these diseases present manageable symptoms and, in the case of 

CML, highly effective treatment options. Progression to the more aggressive stages of the diseases 

limits effective treatment and significantly exacerbates patient prognosis. The mechanisms causing 

delay and disease progression are largely unknown. The later stages of these diseases are 

characterized by excessive build up of primitive cell types, indicating a disruption in the normal 

cell differentiation process that is commonly regulated through feedback from differentiated types. 

In this study, we propose a mechanism where mutated primitive cells produce a feedback 

interference signal that desensitizes them to a normal homeostatic feedback. Using a mathematical 

model, we show that this mechanism can account for the long delay period between occurrence of 

genetic changes and symptomatic onset characterized by fast growth of cancerous cell population. 

Finally, we explore novel concepts for potential treatment of chronic cancers.

Introduction

Chronic cancers, such as Chronic Myelogenous Leukemia, CML, [1], pancreatic cancer [2], 

and colorectal cancer [3], are characterized by long time periods when patients remain 

largely asymptomatic followed by a sudden shift to the onset of aggressive and lethal 

disease. The early phase of many such diseases, collectively referred to here as chronic 

phase, allow for many effective treatment options that are less effective or impossible during 

the later phase, collectively reffered to here as crisis phase. The time spent in the chronic 

phase can be long but highly variable. In particular, CML presents in multiple different 

phases where extreme symptoms can manifest 7–10 years after initial diagnosis [1].

What causes transitions between these different phases? Potentially, transitions happen when 

new genetic mutations are acquired and the length of each phase is dependent on the waiting 

time for new genetic hits. This would, however, imply that genetic profiling should predict 

the phase of the disease which may not always be the case [4]. The mechanistic origin of 

transitions between desease phases is therapeutically relevant. If the early phases of chronic 
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cancers are largely asymptomatic, then delaying progression to the aggressive phases is a 

very effective treatment strategy. Indeed, in the case of CML, Tyrosine Kinase Inhibitors 

(TKIs), do not cure CML but do prevent the progression from chronic phase to crisis phase 

and allow most patients to live normal lives [5].

Progression of cancer is not only marked by accumulated genetic changes. Like healthy 

cells, the physical [6] and biochemical [7] microenvironment is critical in determining 

cancer cell fate and function. Tumors modify their local microenvironment to achieve this 

goal by altering the extracellular signaling environment, the secretorme [7]. Glialblastoma-

multiformae tumors secrete angiogenesis factors [8], pancreatic cancer tumors secrete 

factors that increase the self renewal capacity [9], and colon cancer tumors secrete factors 

that preserve the tumor in an undifferentiated state [10]. These changes to the 

microenvironment impart their own timescales of cancer progression, independent of novel 

genetic mutations, and may influence the time of transition between chronic and critical 

phases.

Many chronic cancers develop from mutations originating in stem cells, such as CML [11], 

or cancer stem cells, such as colon cancer [12]. The progression of these cancers is marked 

by the expansion of an abnormal and non-differentiated cell population, indicating a 

disruption in normal control of cell differentiation processes. In healthy cell populations, the 

cell differentiation processes are mediated by various feedback systems [13]. These 

feedbacks can arise via the production of proliferative or pro-differentiative factors secreted 

by differentiated cell types [14–17]. In particular disruptions in the Wnt pathway (an 

autocrine signaling pathway) have been implicated in the onset of cancer in CML [18] and 

colorectal cancer [19]. Disruptions in feedback lead to disruptions in the differentiation 

program and can result in an overgrowth of undifferentiated cells. Deficiencies of the 

feedback processes that normally provide stem cell-like regulation may be a primary 

triggering factor in development of pathology. Indeed, previous theoretical work has 

identified feedback escape as a critical event in cancer initiation [20].

In this new study, we propose a model of cancer progression that depends on the feedback 

disruption. Feedback interference signal produced by a small population of cancerous stem 

cells disrupts the normal control of cell differentiation processes, leading to biphasic 

behavior. Initially, cancerous populations are kept low (similar to the chronic phase), but 

after a significant delay the cancerous population dominates the healthy population of cells 

(similar to the crisis phase). By exploiting dynamics of the mathematical model, we 

estimated the time delay to the crisis phase. We explored inter-patient heterogeneity using a 

stochastic model of cancer progression. Our study predicts new designs for cancer treatment 

that may potentially outperform conventional approaches.

Methods

To model the dynamics of cancer initiation in stem cell systems, we construct two 

interacting models representing normal and pathological pathways.
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Model of the Normal Cell Population

In healthy cell populations, Stem Cells (SCs) differentiate to Differentiated Cells (DCs) 

which eventually die. The DCs produce feedback that regulates the division profile 

(frequency of different division types) of SCs (Fig 1A). These feedbacks ensure the 

homeostatic stability of cell types, see below and [20]. The Ordinary Differential Equations 

(ODEs) used to model this scenario are given below.

dSC
dt = p DC − q DC v DC SC

dSC
dt = 1 + q DC − p DC v DC SC − dDC

(1)

Here the terms p and q are the proportion of divisions representing symmetric proliferation 

(SC→SC+SC) and symmetric differentiation (SC→DC+DC), respectively. Asymmetric 

division (SC→SC+DC) occurs with probability 1−p(DC)−q(DC). The overall rate of 

division is given by v and death rate of DCs is given by d. Here, p, q, and v are under control 

of feedback from DCs and hence their value depends on the DC population size.

The model we propose here is simplified to two cell types, SCs and DCs, to allow rigourous 

analysis. Real stem cell systems can involve multiple intermediate cell types (including an 

intermediate transit amplifying cells) [21] or involve a highly interconnected regulatory 

network of many different cell types (e.g. hematopoesis) [22]. Since little is known about the 

particular feedback functions in the real biological system, we used here a Hill-like 

description commonly used in literature [14,20,23]. However, our main results are 

qualitatively the same for many different types of feedback functions (see Supplement).

p DC =
p0

1 + DC
γp

np

q DC =
q0

1 + DC
γq

nq

v DC =
v0

1 + DC
γv

nv

(2)

For example, symmetric proliferation proceeds at a percapita rate of p0 in the absence of 

DCs. This rate decreases as the population of DCs increases, reaching 50% of its maximal 

value at the threshold value of γp and completely shutsdown symmetric proliferation only 

for an infinite amount of DCs.
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Model of Cancer Stem Cells and Feedback Interference

In cancerous cell populations, Cancer Stem Cells (CSCs) proliferate and differentiate to 

Cancerous Differentiated Cells (CDCs), however, CDCs, do not die in our model. This lack 

of death of CDCs mimics the diminishment of apoptosis in cancer. However, it should be 

noted that our main results do not depend on this assumption and stand when we introduced 

CDC death (see Supplement). The division profile of CSCs is still regulated by feedback 

from DCs, as in the normal pathway. The CSCs, however, produce a feedback interference 

signal (FI) that disrupts the feedback from DCs to CSCs in a concentration dependent 

manner (Fig 1B). In our model this feedback interference signal represents simplified 

description of a combination of intra- and extracellular signaling pathways involved in 

feedback regulation of the CSC division profile, a thorough discussion of the potential 

identity of the interference signal in biological systems is given in the Discussion. We 

incorporate this in the model by allowing FI to alter probability of symmetric proliferation, 

p(DC), but not symmetric differentiation, q(DC). This was in accordance with the 

observation that unregulated growth in many cancers is due to the abberranat self-

proliferation [9,24]. In particular, we add to the ODEs above the following equations:

dCSC
dt = p DC, FI − q DC v DC CSC

dCDC
dt = 1 + q DC − p DC, FI v DC CSC

dFI
dt = αCSC − βFI

p DC, FI
p0

1 + DC
γp

np 1

1 + FI
γcm

ncm

(3)

In this case, CSCs promotes FI increase which, in turn, can disinhibit the feedback from 

DC→CSC. If FI→∞ the DC→CSC feedback is completely shutdown. Zero FI would 

correspond to a fully intact feedback. The two critical parameters of this feedback are the 

Hill EC50, γcm, and the Hill exponent, ncm, which roughly define the threshold and 

sensitivity, respectively, of feedback interference. We also find that alternative functional 

forms of feedback produce similar results (see Supplement).

In addition to the assumption that CSCs produce feedback interference (the defining 

property of a CSC), we make several assumptions to formulate the model of the cancerous 

population: 1) CDCs do not die; 2) CDCs do not produce feedback signal; and 3) FI only 

affects the cancerous population. The main finding of this work, that feedback interference 

causes a delay in the onset of symptoms, is not affected by relaxing any of these 

assumptions. For a detailed description of these assumptions see Supplement.
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Calculation of Time to Crisis Phase

In this study we are primarily concerned with the time to crisis phase, where the dynamics of 

cancer system suddenly shift from very slow to very fast growth. We define the precise time 

to crisis phase by measuring when the CSC count crosses a threshold value, θ = 100
βγcm

α . 

This amounts to 100 times the natural scaling of the CSC count (see Supplement).

Simulation of the Stochastic Version of the Model

We used the Gillespie Exact Stochastic Simulation Algorithm (ESSA) [25] to simulate the 

stochastic version of our model. Here, the model was divided into discrete events (e.g. 

symmetric renewal of healthy stem cells; see Table 1). The calculation of the state of the 

system at a future time was designed as a four step process [25,26].

1. Each event (indexed here by i) was assigned a probability of occurring, ai, based 

on the rate equations (1–3). So the actual probability that event i occurs in the 

next small increment of time, τ, is τai.

2. The time to the next event of any type was then calculated as a Poisson process. 

Thus, inter-event times are exponentially distributed with parameter λ = ∑iai. 

Drawing a random number from this distribution we obtain the time increment 

Δt.

3. A final random number was drawn to determine which event occurred. Here, 

each event occupies a proportion equal to ai/λ of the unit interval.

4. The selected reaction was executed, the cell counts are updated, and time is 

incremented by Δt.

We use the terminology - stochastic version and deterministic version of the same model - 

because the function that determines the propensity (in the stochastic case) or rate (in the 

deterministic case) is precisely the same. Each version of the model is simulated numerically 

by updating the current state of the system determined by the rate (in the deterministic 

version) or propensity (in the stochastic version), both of which are defined by the right hand 

side of the equations (1–3).

Implementation of Treatment Strategies

Treatment strategies were implemented by making time-dependent alterations to the model 

parameters. This was achieved by multiplying these parameters by Tr(k,t), where k denotes 

the strength and t is time. Specifics for each treatment type are given below.

Chemotherapy—A CDC death event is added with propensity

CDC ⋅ Tr k, t = k ⋅ d ⋅ CDC H t − H t − t f .

Here, k = 20, d is the death rate of the DC from the normal population, H(t) is the Heaviside 

step function, and tf is the time that treatment terminates.
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CSC-Targetted therapy—The symmetric proliferation function for the cancerous 

population is altered

p DC, FI =
p0/Tr k, t

1 + DC
γp

np 1

1 + FI
γcm

ncm

=
p0/(k ⋅ H t − H t − t f

1 + DC
γp

np 1

1 + FI
γcm

ncm

.

Again k=20.

FI-Targetted therapy—The propensity for FI death becomes

Tr k, t βFI = k ⋅ H t − H t − t f .

Here k=200, however it should be noted that all units of treatment strength are different and, 

thus, not comparable.

Results

Many chronic cancers, such as CML, pancreatic, and colorectal cancer show long periods 

betweens the initial genetic onset of the disease and the onset of debilitating symptoms. This 

long delay, which is largely asymptomatic, is then followed by a sharp transition to 

symptomatic and potentially deadly phase of the disease. Because the initial phases of the 

diseases are largely asymptomatic they can go undetected until later phases, thus limiting 

treatment options. To describe a potential mechanism accounting for a delay between 

disease onset and sympomatic onset, we propose mathematical model of normal and cancer 

stem cells dynamics.

We modeled healthy populations of Stem Cells (SCs) and Differentiated Cells (DCs) by 

allowing SCs to undergo three different types of cell divisions: symmetric proliferation (SC 

→ SC + SC), symmetric differentiation (SC → DC + DC), and asymetric division (SC → 
SC + DC) (see eqn. (1) in Materials and Methods). The DCs, but not the SCs, die at a 

constant rate. Importantly, in our model, the DCs produce a feedback signal which then can 

alter the relative rates, or probability, of each division type of the SCs and the absolute 

division rate of any type of SC division (see Fig 1). Thus, increasing size of DC population 

decreased rate of symmetric proliferation (SC→SC+SC) and symmetric differentiation 

(SC→DC+DC), as well as the overall rate of division (see eqn. (2) in Materials and 

Methods). Below, we first show that the feedback inhibitory signal can guarantee a stable 

dynamics with the size of all cell populations remaining constant in the normal (cancer free) 

conditions.
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Feedbacks Ensure Stable Equilibrium in Normal Populations

Healthy SCs in vivo are responsible for maintaing a stable population of SCs, progenitors 

(not modeled here), and DCs. In vivo, stem cell networks are surprisingly capable to respond 

to drastic perturbations (for example loss of DCs) by regenerating the population to its 

normal level. In some stem cell systems, for example the olfactory epithelium [16], this 

control is mediated by feedback signals, as we have modeled here.

In the model describing dynamics of the normal cell populations in the absence of cancer, 

see eqns. (1,2), both SC and DC populations reach stable equilibrium (Fig 1B). Figure 1 

shows dynamics over time of SC (Fig 1C) and DC (Fig 1D) populations for different initial 

conditions - diferent size of SCs and DCs populations at the beginning of simulation. In all 

cases the systems reached the equilibrium after a period of damping oscillations, indicating 

that equilibrium state was a stable focus of the dynamics system (Fig 1B–E). This type of 

dynamics can be explained by the negative feedback mediated by DC population [20]. 

Indeed, any increase in DC population led to suppression (see Materials and Methods), due 

to negative feedback, of both symmetric proliferation and symmetric differentiation [1] and 

return of the populations size to the equilibrium. Further, we found that equilibrium was 

achieved by the balance of symmetric proliferation (SC → SC + SC) and symmetric 

differentiation (SC → DC + DC), as one would expect (see Fig 1E). The exact size of the 

DC and SC populations at the equilibrium depended on the model parameters, this was 

reviewed in a similar model [20]. We concluded that our simplistic SC model recapitulates 

the robust stabilizing properties shown in normal stem cell systems.

Feedback Interference in Cancerous Populations

Causes Crisis Initiation After Delay—Many chronic cancers undergo long delays 

between genetic and symptomatic onset [1–3]. One hypothesis that can account for this 

delay is that sympomatic onset is determined by secondary mutations. It is known that many 

such cancers require more than one mutation to become aggressive and symptomatic. What 

is unknown, however, is when secondary mutations occur, in CML and other chronic 

cancers, relative to the onset symptoms. One possibility is that secondary mutations occur 

long before debilitating symptoms occur. In fact, CML also presents with an intermediate 

phase between chronic and chrisis phases, called accelerated phase, which can last up to 1.5 

years. This accelerated phase shows similar genetic expression to chrisis phase but is 

sympotmatically distinct.

Here we propose a dynamic mechanism via feedback interference to explain a delay 

between the last genetic mutation and symptomatic onset. We modeled the dynamics of the 

Cancer Stem Cells (CSC) population to be nearly identical to SCs, implementing the 

hypothesis that a small set of genetic mutations can turn SCs into CSCs and defining SCs as 

the cell of origin. The distinguishing feature of the CSC population is that CSCs produce a 

Feedback Inhibitor (FI), that disrupts negative feedback from DCs to CSCs in a 

concentration dependent manner (Fig 2A). This feedback interference signal represents 

simplified mathematical description of a combination of intra- and extracellular signaling 

pathways involved in feedback regulation of the CSC division profile (see Discussion). The 

CSCs also differentiate into Cancerous Differentiated Cells (CDCs), which are distinct from 
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DCs in that they do not produce feedback signals and they do not undergo death (although 

neither of these assumptions were actually necessary for the main results presented, see 

Supplement).

To investigate effect of the feedback interference, we first let the model describing the 

normal cell population to reach equiliptium (see previous section) and we then introduced 

the CSC population modeled by eqn. (2) (see Materials and Methods and Fig 2A). The CSC 

population produced the FI signal disrupting normal feedback regulation from DCs to CSCs 

effectively leading to increase in CSC proliferation rate. The cancerous cell population grew 

slowly (subexponentially) until the feedback interference reached a critical amount sufficient 

to partially shut down the feedback mechanism (Fig 2B,C). Then, the populations underwent 

a strong and sudden shift to exponential growth. This sudden shift in population growth 

coincided with a break in the balance between symmetric proliferation and symmetric 

differentiation and a dominance of symmetric proliferation (Fig 2D). Futhermore, we found 

this transition to be robust to parameter changes, as it is shown analytically below.

Conceptually, the feedback interference changes the regulation network in the cancerous 

population. In normal conditions the size of the healthy population was controlled through a 

negative feedback loop from the DCs,

SC DC ⊣ SC,

which gives stable SC and DC counts (Fig 1B). Feedback interference changed this control 

to a positive feedback in the cancerous population,

CSC FI ⊣ DC ⊣ CSC ,

which produced unstable dynamics and unlimited growth. Positive feedback is common in 

biological systems and is characterized by bimodal responses [27], ultrasensitivity [28], 

delay to onset [29,30]. The positive feedback structure in our model was responsible for the 

transition to the crisis phase. However, the nonlinearities in the feedback inhibition, see eqn. 

(3), require critical levels of FI must build up before the system transitions from a minimally 

active (slow subexponential CDC and CSC growth) to a maximally active (exponential 

growth) state. Specifically, at cancer onset, low CSC counts implies that low, but positive, 

amounts of FI is present, thus feedback from DC to CSC remains largely intact, but less 

effective compared to the normal (healthy) conditions (as described in the previous section). 

This leads to the CSC population growth, but at minimal rate. As time progresses, small 

amounts of FI slowly buildup and release the CSCs from feedback due to DCs. Once this FI 
population is significantly above the threshold level, γcm, the CSCs undergo the transition to 

crisis phase. In terms of dynamical systems, because the equilibrium point is neutrally stable 

in the model, the system stays in the vicinity of the equilibrium untill the nonlinear terms 

build up enough to drive the transitition away from the equilibrium. Two main parameters 

controled the effectiveness of the feedback interference: the threshold level or EC50, γcm, 

and the sensitivity or Hill exponent, ncm. If the threshold level, γcm, is high it will take a 

larger pool of FI to effectively shut down the feedback inhibition. If the sensitivity, ncm, is 

high, an amount of FI slightly less than γcm will have little effect on feedback inhibition, but 
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an amount slightly greater than γcm will completely shut down the feedback inhibition. We 

will frequently refer to these two critical parameters in the text below.

Stability analysis of this system revealed a large time scale separation between fast variables 

dscribing FI dynamics, and a slow variable describing CSC dynamics. Under the appropriate 

conditions (see Supplement), we were able to exploit the time scale separation using a center 

subspace approach to derive an analytical expression for the time from the cancer initiation 

(characterized by the last known genetic mutation) to the crisis phase, Tcrisis.

Tcrisis ≈
γcmβ

α ⋅ CSC0

ncm 1 + DC∞/γp

np

nmp∞v∞ DC∞/γp

np
(4)

Here, infinity subscripts denote steady state values of DC, p(DC) and q(DC) (see 

Supplement). This approximation of Tcrisis is dependent on the assumption that the initial 

amount of CSCs, and therefore initial feedback interference is close to zero. Specifically we 

require that 
αCSC0
βγcm

≪ 1 (see Supplement). The time to crisis phase was primarily influenced 

by the initial CSC count, CSC0 multiplied by the number of FI molecules produced by each 

CSC at steady state, α/β, relative to the threshold for feedback interference, γcm. Further, 

time to crisis grew polynomially with the inverse of this ratio raised to the Hill exponent of 

feedback interference, ncm (Fig 2D). To summarize, the model predicts that time to crisis can 

be increased (leading to a longer delay of the problematic symptom onset) by decreasing the 

initial CSC count (Fig 2E), decreasing the influence of CSCs on FI, or increasing the 

threshold for feedback interference.

Our feedback interference model predicts a dynamical mechanism governing the delays and 

transitions between asymptomatic and aggressive phases of the chronic cancers. This idea is 

different from a model where another mutation is nesessary to trigger the aggressive phase. 

In our model, the mutation that gives rise to the production of a feedback interference signal 

effectively switches the regulation of CSCs from a negative feedback, which is responsible 

for the control of the population in healthy SCs, to a positive feedback, which produces both 

delays and eventual explosive growth. This drastic shift in the control structure can account 

for both the delays and the sharp aggressive onset seen in the intermediate phases of chronic 

cancers. While this model does not exclude possibility of other mutations, it does not require 

them to explain the long delays seen between phases in many chornic cancers. Below, we 

compare our dynamic, feedback interference mechanism to cannonical genetic deletion 

models in their ability to describe this delay and sharp transition.

Genetic Deletion of Feedback Receptor Causes Immediate Growth of Cancer Population

Loss of feedback inhibition can explain progression to more aggressive phases in chronic 

cancers. In our model, this mechanism is triggered by specific “mutation” that allows CSCs 

to produce a feedback interference signal. This feedback interference mechanism is 

responsible for long delays and sudden shifts without subsequent genetic mutation events. Is 
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it conceivable that a simple deletion of the feedback receptor on the CSCs could allow for 

the delays and switching in cancer dynamics?

To test this hypothesis, we imposed a deletion of the feedback receptors in our CSC model. 

This deletion desensitizes CSCs to feedback entirely and immediately. We found, in 

agreement with the previous results reported in [20], that cancer growth initiated 

immediately and it was unrestricted (not shown). Even partial inhibition could not induce 

delays to CSC invasion [20]. Partial inhibition of the receptor does, however, limit the size 

of CSCs population, though this limit culd be much larger than the healthy population.

Thus, mutations that simply remove sensitivity to the feedback signal cannot explain delayed 

onset to debilitating symptoms. We should note that a model of oncogenesis that requires a 

sequence of multiple mutations can potentially provide dynamics that is similar to our 

feedback model. In such multiple mutation model, delays can be introduced by the waiting 

times between successive mutations and the strong switch to the crisis phase might be 

induced by the final mutation which deletes the feedback receptor of the CSCs. Such model, 

however, offers no explanation as to origin of these delays between mutations nor can it 

predict the time of the onset of crisis phase, as we have done for our feedback interference 

model, eqn. (4).

Heterogeneity and Stochastic Dynamics May Lead to Cancer Extinction

One of the largest hurdles to overcome in understanding the genesis and progression of 

cancer is heterogeneity [31]. The characteristics of cancer vary wildly across different types 

of cancer, different patients, and ultimately different outcomes of many largely stochastic 

processes undelying cell population dynamics [32–34]. In the latter case, the progression of 

cancer can change due solely to chance. In other words two patients with precisely the same 

expected outcome (or two model simulations with the same parameters) may result in wildly 

different scenarios. We focus on this source of heterogeneity by simulating our model using 

a stochastic implementation (see detailed description in Methods).

The feedback interference mechanism that we propose is particularly sensitive to stochastic 

variation in cell division events. Feedback interference requires the interaction of two 

connected feedback loops (normal homeostatic feedback and feedback interference). 

Further, as we discuss above, the time of onset of the crisis phase depends critically on a 

small initial CSC population. Stochastic variation can have serious consequences when cell 

populations are small or involved in multiple feedbacks. Therefore, below, we implemented 

the same model described by equations (1–3) using the Gillespie method [25,26]. In the 

stochastic version of the model, each event (e.g. cell divison) is given a probability to occur 

in the next small time step based on the right hand side of equations (1–3) and a draw of 

random numbers determines which event occurs. This is in contrast to the deterministic 

ODEs, where small changes in each cell count are calculated for every time step (see 

Methods for details).

We found qualitatively similar results between the stochastic and deterministic versions of 

the model. Both showed a delay from onset to crisis phase caused by a slow build up of FI 
which induced a release from feedback inhibition (Fig 3A,B). However, as predicted in the 
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discussion above, stochastic dynamics had a large impact, quantitatively, on the precise time 

of transition to crisis phase, Tcrisis. Deterministic simulations (Fig 3A, black dashed line) 

produce drastically different Tcrisis, than the mean of all stochastic trials (Fig 3C, black 

dashed line). Further, the stochastic version of the model also led to high variability in Tcrisis 

across individual trials (see Fig 3C).

One of the most interesting outcomes of the stochastic version of the model is that extinction 

of the CSC population is possible, even probable. Fig 3C shows CSC dynamics in different 

trials, some of which entered crisis phase at various times and grow rapidly. However, others 

(in fact the majority) underwent stochastically driven extinction (depicted in Figure 3C 

where CSC counts go to 0). Thus, a simulation with a unique set of parameters (or a patient) 

might have wildly different outcomes (extinction of CSCs or entrance to crisis phase) 

depending only on chance. It is worth noting that this scenario is not possible in the 

deterministic variant of the model. Multiple factors combine to yeild a probable extinction in 

the stochastic model. First, all simulations here began with a small initial population of 

CSCs, thus, as each symmetric differentiation reduces the number of CSCs by one, this 

population of CSCs begins at risk for extinction. Second, at low levels of FI the feedback 

from DCs is largely intact, therefore the CSC populations is nearly at equilibrium. But we 

saw previously (Fig 2D) that this means that symmetric proliferation and symmetric 

differentiation events happen nearly at the same rates. Therefore, in more than half of the 

stochastic trials tested, it was more probable to undergo enough symmetric differentiation 

events to deplete the small CSC population that it was to undergo enough symmetric 

proliferation events to build up FI and to escape a feedback control.

In the stochastic version of the model, even a single set of parameters can result in either 

extinction or transition to the crisis phase. Further, given that the system undergoes a specific 

transition (crisis or extinction), the time at which this happens varies wildly (Fig. 3D). We 

found that the distribution of Tcrisis is roughly log-normal across all parameters. The 

coeffiecient of variation, the ratio of the standard deviation to the mean, was around 0.4 for 

all parameters, indicating high variability. Like the deterministic system, we found that the 

mean time to blast crisis increased as a function of 
βγcm

αCSC0
, as in eqn. (4), see Fig. 3D, shown 

with increasing γcm. The probability of extinction also increased as a function of these 

parameters (Fig. 3E). Indeed for higher values of 
βγcm

αCSC0
, would require a greater ammount 

of FI to accumulate before making significant impact to block a feedback inhibition. This 

would give potentially more time for stochastic processes to lead to CSC population 

extinction.

The similarities between the deterministic and stochastic variants of the model are 

qualitative, both undergo a delay to crisis phase which increases with 
βγcm

αCSC0
, but not 

quantitative. We found that in those cases where the stochastic system does not go extinct, it 

will undergo the transition to the crisis phase earlier than deterministic system (see Fig 3F). 

The Tcrisis times for the stochastic variant of the model are based upon the condition that the 
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cancerous system, initiating with a single CSC, survived extinction (see Fig 3C). In order to 

survive extinction, the transition to crisis phase must occur before extinction. Effectively, 

extinction acted as a filter that removes trials that undergo this transition too late, and thus 

the remaining trials have a decreased Tcrisis. From a dynamical systems point of view, the 

cancerous system starts close to the equilibrium point (CSC = 0, FI = 0), of a fast-slow 

system. The deterministic variant of the model first flows quickly onto the center manifold 

and then slowly away from the equilibrium point. Along the center manifold the speed 

increases non-linearly with distance from the equilibrium point. A small amount of 

stochastic variation can drastically accelerate the slow departure from the equilibrium point 

by pushing the cancer system further along the center manifold and hastening the transition 

to the crisis phase.

Our study predicts that heterogeneous effects, modeled here by different realizations of 

stochastic events, can lead to drastically different outcomes of cancer cell population 

dynamics: extinction of the CSC population or acceleration to crisis phase. Further, the fact 

that we observed that most trials lead to extinction before the crisis phase onset increases the 

burden of feedback escape that must be overcome by cancer. This provides a potential novel 

interpretation of cytostatic neoplasms as cancers whose CSC population went extinct before 

overcoming feedback escape. These issues reinforce the importance of examining cancerous 

systems in a stochastic context.

Targeted FI and CSC Treatments Make Profound Improvements over Chemotherapy

The mechanism of feedback intereference that we describe above exposes a novel axis for 

treatment of cancer. Blocking the feedback interference signal should have a drastic impact 

on cancer systems mediated by feedback interference. We evaluated the possibility for a FI 

targeted treatment and compared its efficacy to current therapeutic approaches.

Chemotherapy is currently one of the primary approaches for treatment of cancer. It 

nonspecifically induces the death of cells that are replicating rapidly and thus it is very 

effective at debulking tumor size, but leaves patients prone to relapse. According to cancer 

stem cell theory [35,36], chemotherapy can affect only CDCs and not CSCs, leaving the 

CSCs able to regenerate the tumor. Recently, CSC-specific treatments have been identified 

and proposed in some types of cancer [9,23]. CSC targeted treatments have little effect on 

tumor size but selectively kill the CSCs that can affect relapse. However, CSC specific 

treatments are still in the early stages and limited to only a few types of cancer [9,23] and 

other modes of inhibiting CSC propagation are needed.

To implement treatment into our model we manipulated model parameters that were specific 

to the treatment type during the treatment period (Fig. 4). We calculated the reduction in 

tumor bulk and overall survival. Here, we defined a death event to occur when the tumor 

bulk (CSCs and CDCs) exceed a given threshold (see Fig. 4A). Chemotherapy was 

implemented by imposing death of the CDC population (Fig. 4B inset). Despite the fact that 

this had no impact on CSCs (tumor generating cells), chemotherapy still reduced tumor bulk 

and therefore staved off transition to crisis phase so as to allow a greater chance of 

stochastically driven extinction (Fig. 4B). CSC-specific therapy was implemented by 

directly reducing the symmetric proliferation rate (Fig. 4C inset). This killed the tumor 
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generating CSCs, but left the CDC population, which represent the majority of the tumor, 

intact (Fig. 4C). Finally, our novel FI-directed treatment was implemented by increasing the 

death rate of FI (Fig. 4D). This stopped the growth of tumor generating CSCs by keeping 

them in control of normal homeostatic feedbacks. This did not directly kill the CSC 
population but did keep the CSC growth rate very low and allowed stochastically driven 

extinction to eventually eridicate this small CSC population. Our FI-directed treatment also 

left the CDC population intact.

To compare the efficacy of different treatment strategies we ran multiple stochastic trials and 

quantified the results using the “survival rate”. The transition to crisis phase, defined here as 

the tumor bulk exceeding a certain threshold (see Fig. 4), was classified as a “lethal event”. 

Survival was quantified as the number of stochastic trials that remained in chronic phase 

(Fig 4E–F). Larger fraction of such trials would consitute better survival rate in our model.

Despite debulking large portions of the tumor, chemotherapy made only slight 

improvements on average over scenarios without treatment (Fig. 4E). In the model that we 

present here, the tumor is generated by the CSCs which are untouched by chemotherapy. 

Thus, even tumors with greatly reduced CDC population (as a result of chemotherapy) can 

regenerate the tumor and enter crisis phase solely due to overgrowth of CSCs. 

Chemotherapy, however did show slight improvements over scenarios without treatment. 

Loss of CDCs, due to chemotherapy, effectively delays the time at which the tumors could 

reach the threshold bulk amount for a leathal event. This delay prolonged the time in the 

chronic phase where CSC counts are low and succeptible to stochastically driven extinction.

The model of CSC targetted therapy was very effective. In almost every implementation, we 

found a 100% survival rate (Fig. 4E–F). CSC-targetted treatment destroys the tumor 

generating CSCs and thus leaves tumor cytostatic. It should be noted that the majority of the 

tumor (the population of CDCs) remains even after treatment, but cannot grow or progress 

the disease to the crisis phase.

The novel FI-directed treatment was not as successful as the CSC-specific treatment but still 

revealed large improvements in survival rate (Fig. 4E–F). We found that FI-targetted therapy 

was effective at controlling the growth-rate of the CSC population. While it did not kill 

CSCs directly, it kept growth rate low and allowed stochastically driven extinction to 

eridicate the CSC population. This mechanism, also revealed a strong dependence of 

treatment success on the treatment duration (Fig. 4G). Long durations of FI-treatment had 

stronger effects on the CSC population.

The feedback interference mechanism for cancer progression is strongly dependent on the 

feedback interference signal, FI. This provides a novel axis for cancer treatment. We showed 

while this is not as effective as CSC-targetted therapy, it still can have profound effects on 

survival rate and outperforms chemotherapy in CSC-dependent cancers. FI-targetted therapy 

could provide an attractive option, especially in cases where CSC-targetted therapy was not 

available.
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Discussion

Long delays are known to exist in the progression of many types of cancer where initial 

cancerous populations remain small until a sudden shift to an aggressive crisis phase [1,2]. 

These delays offer the opportunity for early intervention and better patient prognosis. 

However, the mechanisms that confer these delays or induce the shift from asymptomatic to 

crisis phases are still unknown. In this study, we proposed a dynamic model of healthy and 

cancerous cell populations to explain the delay between the time of carcinogenic genetic 

mutations and the onset of clinical symptoms in stem cell cancers, such as leukemia. Our 

model describes a mechanism where an extracellular factor, FI, produced by cancerous stem 

cells progressively disrupts the normal homeostatic feedback from differentiated cell types 

to stem cells. This leads to a strong and sudden shift in growth rate of cancer cells preceeded 

by a long dormancy period, where cancerous cell populations are kept low, as was observed 

in clinical studies [1].

Feedback is critical in order to maintain homeostasis. Our model predicts, as have others 

[20], that feedback from differentiated cell populations imposes a single stable homeostatic 

state where both stem and diffferentiated cells are maintained. This stability is critical during 

injury, where loss of differentiated cell population invokes the stem cell system to return to 

the appropriate amounts of stem and differentiated cells. Candidate feedback signals have 

been found in many stem cell systems. For example, in the stem cell regulation of the 

olfactory epithelium, GDF11 is secreted by differentiated neurons and controls the actions of 

progenitors [16]. The regulation of blood production, which is critical for diseases like 

CML, involves many different feedback signals (e.g. VEGF, TGF-β) that regulate the actions 

of upstream stem cells and progenitors [14]. Indeed, many cancers show mutations in these 

critical feedback pathways. The Wnt pathway, critical in regulating hematopoeisis [37–39], 

is also mutated in many different cancers [18,24,40].

The feedback interference mechanism of cancer initiation, proposed in our study, 

specifically disrupts these normal feedback signals in a dose-dependent manner. This 

dependency on the amount of FI, critical for the delay mechanism discussed, can be 

characterized as a modification of the microenvironment by the CSCs that establishes a 

niche for cancer progression. Like healthy cells, the physical [6] and biochemical [7] 

microenvironment is critical in determining cancer cell fate and function. It is known that 

cancer, and in particular CSCs, modify their local microenvironment to achieve this goal [7]. 

In many cases this is done by secreting extracellular signaling molecules. For example, in 

glialblastoma-multiformae CSCs are known to secrete VEGF, an angiogenesis factor, [8]; in 

pancreatic cancer CSCs secrete the TGF-β signal Nodal and its receptor, which increased 

self renewal capacity [9]; in colon cancer CSCs secrete HGF, acting through Wnt, to keep 

CSCs in an undifferentiated state [10]. Thus, CSCs modify their local environment via 

secretory signals, and, in some cases [9,10], these signals specifically alter the stem cell 

differentiation program as proposed in our model. This leads to increased stem cell 

proliferation and, eventually, transition to crisis phase, in agreement with our model 

predictions.
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Tumors have a large impact on their microenvironment through the signals they secrete and 

the invasive actions they take (e.g. degredation of the extra-cellular matrix). This interplay 

between the local environment and cancer strongly affects the rate of tumor progression. The 

relative role of environmental and genetic influences of cancer progression remains an active 

area of research. To investigate whether mutations could induce delay in our model we 

imposed a genetic deletion of a feedback receptor on the CSCs. This initiated immediate 

transition into crisis phase and therefore cannot account for the delays seen in cancers like 

CML, pancreatic, and colorectal cancer [1,2]. In contrast, our feedback interference model 

produced a delay that depended on the initial CSC count, the amount of FI produced by 

CSCs, and effectiveness of the FI impact on the normal feedback inhibitory mechanisms. It 

should be noted that many of the cancers do acquire multiple different mutations before 

progression into crisis phase [3], and the connection between genetic and environmental 

influences on the progression of cancer is still active area of research.

Genomic studies of cancer show that the disease presents with many different sources of 

heterogeneity: between cell or cancer types, between patients, and (among others) within 

subpopulations of the tumor itself [41,42]. To explore the role of heterogeneity of cancers 

and the variance in pateint outcomes, we implemented a stochastic model of cancer cell 

population dynamics. Individual trials represent different outcomes of the stohastic 

processes that initiate cancer. We found, as have others [20], that the cancer stem cell 

population can go extinct due to purely stochastic effects. Starting from a small amount of 

cancerous stem cells, a small number of symmetric differentiation events will extinguish the 

population. This indicates that the initial portion of chronic phase is a critical period 

deciding between one two divergent outcomes: stochastic extinction of CSCs or transistion 

to crisis phase. During this critical period treatment efforts may be most efffective as the 

CSC population may only require encouragement to undergo stochastically driven 

extinction. This type of extinction may also offer insight into the inability for some early 

stage tumors to transition to more aggressive stages, for example in colorectal cancer [3], or 

the existence of non-expansive benign tumors.

The identification of a novel mechanism for delay between chronic and critical phases in 

cancer progression provides an opportunity for a novel approach to therapy. In the feedback 

interference mechanism we propose the interference is mediated by a chemical signal, FI, 

which could be a potential drug target. While FI-targeted treatment did not have the same 

impact of CSC-targeted treatments, our model predicted that it does significantly increase 

survival. The novel FI-targeted treatment may not be ideal in scenarios where options such 

as CSC-targeted treatment are available. However, FI-targetted therapy may offer an 

effective alternative that can delay the progression of cancer long enough so as stochastically 

driven extinction of the CSC population may occur.

Conclusions

Homeostatic feedback is critical for stem cell regulation. We propose that interference in this 

circuit can promote cancerous conditions. This mechanism of cancer initiation replicates the 

biphasic nature of certain chronic cancers, such as CML, pancreatic, and colorectal cancer 

where long delays exist between largely asymptomatic and lethal phases. These delays may 
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not be restricted to chronic cancers. Standard treatment options, such as chemotherapy, can 

extend delays between treatment and relapse. However, novel treatment options targeting 

cancer stem cell population have the potential to decrease or eliminate relapse. Some of 

these treatments have already been explored in animal model systems leading to cancer 

reduction [23]. Further experimental and modeling studies are needed to test these 

predictions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig 1. Normal Stem Cell Model Dynamics
A) Model of normal cell growth. Stem Cells are capable of proliferation and differentiation 

to DCs who eventually die. Feedback from DCs mediates the division rate and profile (see 

Methods). See supplement for parameters. B) Phase plot of SC and DC populations. Phase 

trajectories are shown for different initial conditions (black circles). All simulations end at 

the same equilibrium (red dot). C, D) Dynamics of SCs (C) and DCs (D) for different initial 

conditions. E) Probability profile of different division types. Equilibrium is reached when 

symmetric differentiation matches symmetric proliferation.
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Fig 2. Cancer Stem Cell Dynamics
A) Model of cancer cell growth. Cancer Stem Cells create a feedback interference signal, FI, 
that disinhibits feedback from DCs to CSCs. B) Time course of the cancer system. 

Trajectories corresponding to a single initial CSC are denoted by thick lines, where as those 

for initial CSC count of two or three are progressively thinner lines. Dynamics of the cancer 

system starting from different initial conditions show a long period where tumor growth is 

slow followed by a sharp transition to fast growth. The black dashed line denotes the time 

which we defined as Tcrisis.. C) Phase plot of the CSC and FI. Phase trajectories are shown 

for different initial conditions (black circles). Trajectories corresponding to a single initial 

CSC are denoted by thick lines, where as those for initial CSC count of two or three are 

progressively thinner lines Axes are in terms of a scaled hyperbolic tangent of the variables 

(here k = 0.1), thus, tanh(k CSC)→1 as CSC→∞. Note, that trajectories all grow 

uboundedly in time (red dot). D) Probability profile of division types shows a strong switch 

at Tcrisis favoring symmetric proliferation. Trajectories for a single initial CSC are denoted 

by thick lines, where as those for initial CSC count of two or three are progressively thinner 

lines. E) Comparison of analytical estimate of Tcrisis with numerically calculed value for 
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multiple combinations of feedback interference threshold, γcm and initial CSC count. 

Trajectories for a single initial CSC are denoted by thick lines, where as those for initial 

CSC count of two or three are progressively thinner lines.
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Fig 3. Heterogeneity via Stochastic Dynamics
A,B) Comparison of deterministic (A) and a single trial of a stochastic (B) simulation for the 

exact same parameters with a single initial CSC. Dashed lines represent calculated Tcrisis. C) 

Many trials of stochastic simulation with the same parameters as in A) and B). Dashed black 

line denotes the mean over trials of calculated Tcrisis. Plot is given in log plot above red 

dashed line, below this line we also show CSC=0 to show extinction. D) Distribution of 

log10(Tcrisis) for two different values of γcm. E) Mean plus and minus one standardard 

deviation of the Probability of extinction, Pext for numeric stochastic simulations is plotted 

for various levels of the interference threshold, γcm. F) Tcrisis is plotted in log-scale as 

calculated from the deterministic variant of the model analytically (blue curve) and 

numerically (blue diamonds). This is compared with the mean plus and minus standard 

devaition of Tcrisis in the stochastic variant of the model.
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Figure 4. Efficacy of Treatment Strategies
A–D) Example trials of the cancer system dynamics where no treatment (A), chemotherapy 

(B), CSC-targetted therapy (C), or FI-targetted therapy is employed. In each case therapy is 

given for the entire duration shown. Stick models of the implementation of treatment are 

shown in the inset, see Methods for details. E–F) Survival rate under different treatment 

conditions (see colors) and durations (see black dashed line). G) Survival is given as a 

function of treatment duration.
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Table 1

Summary of Events in Stochastic Version of the Model.

Event Propensity (Rate) State Change

Sym. Renewal of SCs p(DC)v(DC)SC SC → SC + 1

Sym. Diff. of SCs q(DC)v(DC)SC SC → SC − 1,
DC → DC + 1

Asym. Diff. of SCs [1 − p(DC) − q(DC)]v(DC)SC DC → DC + 1

DC Death dDC DC → DC − 1

Sym. Renewal of CSCs
p DC, FI v DC CSC

CSC → CSC + 1

Sym. Diff. of CSCs q(DC)v(DC)CSC CSC → CSC − 1,
CDC → CDC + 1

Asym. Diff. of CSCs
1 − p DC, FI − q DC v DC CSC

CDC → CDC + 1

Birth of FI αCSC FI→FI+1

Death of FI βFI FI→FI−1
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