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SUMMARY

A key characteristic of stem cells and cancer cells is their ability to self-renew. To test if Wnt signaling
can regulate the self-renewal of both stem cells and cancer cells in the hematopoietic system, we de-
veloped mice that lack b-catenin in their hematopoietic cells. Here we show that b-catenin-deficient
mice can form HSCs, but that these cells are deficient in long-term growth and maintenance.
Moreover, b-catenin deletion causes a profound reduction in the ability of mice to develop BCR-
ABL-induced chronic myelogenous leukemia (CML), while allowing progression of acute lymphocytic
leukemia (ALL). These studies demonstrate that Wnt signaling is required for the self-renewal of
normal and neoplastic stem cells in the hematopoietic system.
INTRODUCTION

Wnt proteins are secreted signaling molecules that influ-

ence both development and cancer. In the context of devel-

opment, Wnts regulate segment polarity in Drosophila

(Siegfried and Perrimon, 1994), axis specification in Xeno-

pus (Moon et al., 1997), and differentiation of limbs, brain,

kidney, and the reproductive tract in mice (Liu et al., 1999;

Miller and Sassoon, 1998; Monkley et al., 1996; Parr and

McMahon, 1994; Yoshikawa et al., 1997). In addition to its

importance in normal development, dysregulation of the

Wnt pathway can have potent oncogenic effects. A causal

role for this pathway in oncogenesis was originally demon-

strated using mice in which overexpression of Wnt-1 led to

mammary tumors (Tsukamoto et al., 1988). In humans, in-

activating mutations in the Wnt pathway inhibitor APC are

associated with the colon cancer susceptibility syndrome

familial adenomatous polyposis (Kinzler et al., 1991). Muta-

tions in APC as well as b-catenin, a key mediator of Wnt

signaling, are also found in a majority of sporadic colon

cancers (Giles et al., 2003), as well as in hepatocellular

carcinoma (Satoh et al., 2000), thyroid cancer, and ovarian

cancer (Gamallo et al., 1999; Garcia-Rostan et al., 1999).
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The fact that Wnt signaling is dysregulated in multiple

solid cancers together with its observed influence on hema-

topoietic stem and progenitor cells (reviewed in Reya and

Clevers, 2005) suggests that the same pathway may be-

come aberrantly activated to promote leukemia. Several

studies support this possibility. For example, pre-B cell leu-

kemia lines carrying the E2A-PbX translocation overex-

press Wnt proteins (McWhirter et al., 1999), and survival

of these cells in vitro can be inhibited by blocking Wnt sig-

naling (Mazieres et al., 2005). Similarly, AML-associated

fusion proteins enhance replating efficiency of hematopoi-

etic stem cells (HSCs), and this is abrogated upon inhibition

of Wnt signaling (Muller-Tidow et al., 2004; Zheng et al.,

2004). Finally, cells from CML patients display activated

Wnt signaling and a dependence on this pathway for

growth in vitro (Jamieson et al., 2004). While these data

suggest that activation of the Wnt pathway may contribute

to leukemic cell growth in vitro, whether Wnt signaling is

required for progression of leukemias in vivo is unknown.

To address this question, we generated conditional

b-catenin null mice. Using these mice we show that loss

of b-catenin affects both normal and malignant hemato-

poietic cells in vivo. While HSCs are established in the
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Figure 1. Conditional Deletion of b-Catenin in the Hematopoietic System

(A) The schematic indicates the strategy for deletion of b-catenin in hematopoietic cells using mice carrying a floxed b-catenin allele crossed to trans-

genic mice in which expression of the cre recombinase is directed by the vav promoter.

(B) Analysis of deletion efficiency by genomic PCR analysis. Genomic DNA from control and b-catenin�/� whole bone marrow cells was amplified

using primer RM68/69, which does not generate a product for the floxed allele but generates a 631 bp product for the floxdel allele (left lanes; 45

relative fluorescence units for �/� and 0.64 RFU for control), and primer RM41/42/43, which generates a product of 324 bp for the floxed allele

(1.5 RFU for control and 0.0006 RFU for �/�) and a 500 bp product for the floxdel allele (69 RFU for �/� and 0.32 for control) (Brault et al., 2001).

Quantitation of the difference in product formation was carried out by real-time PCR analysis. Results are representative of two experiments.

(C) Whole bone marrow lysates from control (+/+) and b-catenin knockout (�/�) mice were analyzed by western blot for presence of b-catenin.

Results shown are representative of four experiments.

(D) KLS cells were isolated from control (+/+), heterozygous (+/�), and conditional b-catenin knockout (�/�) mice, and RT-PCR analysis was

performed to determine expression of b-catenin. Results are representative of three experiments.
absence of b-catenin, they are impaired in long-term

growth and maintenance following transplantation. Impor-

tantly, using a BCR-ABL model of leukemogenesis, we

show that loss of b-catenin impairs the ability of mice to

develop CML, due in part to decreased self-renewal of

CML stem cells. In contrast, these mice are capable of

developing ALL. Since CML is thought to be initiated in

HSCs, and ALL in committed precursors, these data raise

the intriguing possibility that b-catenin is preferentially re-

quired for BCR-ABL-induced leukemias that originate in

stem cells. These data also suggest that the dependence

of leukemias on Wnt signaling is dictated not only by the

oncogene itself but also by the specific cell that it targets.

RESULTS

Generation of Conditional b-Catenin Null Mice
Conventional b-catenin�/�mice die in utero (Haegel et al.,

1995; Huelsken et al., 2000). Therefore, to examine the

role of b-catenin in adult hematopoietic stem cell function
Canc
and leukemia progression, we generated conditional

knockouts. Mice in which b-catenin is flanked by loxP

sites (flox-b-catenin mice) (Brault et al., 2001) were

crossed with mice in which the Cre recombinase is driven

by vav regulatory elements (vav-Cre mice). Vav is an adap-

tor protein expressed mostly in the hematopoietic system,

including in HSC-enriched fractions (Almarza et al., 2004;

de Boer et al., 2003). Progeny from this cross would

be expected to delete b-catenin predominantly in the

hematopoietic system (Figure 1A).

To ensure that this strategy was effective, we performed

genomic PCR (Brault et al., 2001). This showed that in

b-catenin�/�mice (loxp/loxp, cre), the floxed allele was ef-

ficiently deleted and the undeleted allele could no longer

be detected (70- to 2500-fold reduction by real-time

PCR) (Figure 1B). In addition, no b-catenin protein could

be detected in the bone marrow of conditional null mice

(Figure 1C). Finally, b-catenin mRNA expression was un-

detectable in c-kit+Lin�Sca-1+ (KLS) cells, a population

highly enriched for HSCs (Figure 1D). These data
er Cell 12, 528–541, December 2007 ª2007 Elsevier Inc. 529
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Figure 2. b-Catenin Is Required for Long-Term Stem Cell Maintenance and Transplantation In Vivo

(A) Bone marrow cells from control or b-catenin knockout mice were analyzed for frequency of KLSF cells. Dot plots are shown for one representative

control (control, left) and b-catenin knockout mouse (b-catenin�/�, right).

(B) Average frequency of KLSF cells in control and b-catenin knockout mice. n = 11 for control, n = 13 for knockout.

(C) Five-hundred KLSF cells from control or b-catenin knockout mice were transplanted together with competing bone marrow cells into lethally

irradiated congenic recipients, and donor-derived chimerism was monitored for 20 weeks. Plots show representative donor-derived chimerism

from individual mice at 20 weeks.

(D) Graph of average donor-derived chimerism after long-term reconstitution (5–7 mice in each cohort, p = 0.0079, n = 3). In five independent exper-

iments, the difference in chimerism between control and knockout transplants was 5-fold (500 cells transplanted), 2.8-fold (2000 cells transplanted),

and 1.4-fold (6000 cells transplanted).

(E) Contribution to differentiated lineages from control and b-catenin knockout cells following long-term bone marrow transplantation in peripheral

blood. Results are representative of three independent bone marrow transplantation experiments, with 5–7 mice in each cohort.

(F) Limiting-dilution competitive repopulation analysis of control and b-catenin knockout mice. Eight mice were transplanted at each dose (10, 20, 40,

and 50 cells/recipient for a total of 64 initial recipients for both genotypes). Peripheral blood cells of all surviving recipients were analyzed 10 weeks

after transplantation, and data were analyzed by L-calc software. CRU difference is 4-fold between control and knockout.

(G) Secondary limiting-dilution competitive repopulation analysis of control and b-catenin knockout mice was carried out using the 50 cells/recipient

group of primary transplanted mice at 21 weeks. Whole bone marrow cells were isolated from primary donors and transplanted into 5–7 recipients at

each dose (10,000, 40,000, 80,000, and 160,000 cells/recipient for a total of 48 recipients). Peripheral blood cells of the secondary recipients were

analyzed 10 weeks after transplantation, and data were analyzed by L-calc software. CRU difference is 6.3-fold between control and knockout.

(H) Relative homing ability of control and b-catenin�/� bone marrow cells. A total of 2 3 106 bone marrow cells from control or b-catenin�/�mice were

transplanted into irradiated recipients (n = 4 in each group), and the presence of donor-derived cells was analyzed by FACS 6 hr posttransplant. In (B),

(D), (E), and (H), error bars represent SEM.
suggested that b-catenin was efficiently deleted in HSCs

and that this model could be used to test the requirement

of b-catenin in HSC renewal and leukemogenesis.

To determine whether loss of b-catenin leads to defects

in HSC function in vivo, we stained for markers of imma-

ture and mature hematopoietic cells. The frequency of

long-term stem cells (c-kit+Lin�/loSca-1+Flk2� cells, or

KLSF cells) was equivalent in control and b-catenin�/�

mice (Figures 2A and 2B). In addition, these cells were

equivalently distributed among the different stages of

the cell cycle (Figure S1 in the Supplemental Data avail-

able with this article online). b-catenin�/� mice also had

a normal distribution of B, T, and myeloid cells (data not

shown) as well as CMP, GMP, and CLPs (Figure S2). To
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test the long-term self-renewal capacity of HSCs from

b-catenin�/� mice, we transplanted 500 KLSF cells from

control and b-catenin�/�mice in the presence of compet-

ing control bone marrow cells and monitored long-term

reconstitution ability. Mice reconstituted with b-catenin�/�

KLSF cells displayed a 5-fold reduction in donor chime-

rism compared to mice transplanted with control KLSF

cells (Figures 2C and 2D and Figure S3). Importantly, the

lineage distribution within the control- and knockout-

derived populations was similar (Figure 2E), indicating

that loss of b-catenin does not affect lineage differentia-

tion, but rather impairs long term-growth and mainte-

nance of HSCs. In addition, we carried out competitive

limiting-dilution experiments using a range of 10–50 cells
nc.
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per recipient and found a 4-fold reduction in the frequency

of functional HSCs as determined by CRU analysis

(Figure 2F and Figure S4A). Upon secondary transplants

there was a 6.3-fold reduction in the frequency of

functional HSCs in b-catenin-deficient bone marrow

(Figure 2G and Figure S4B), supporting the conclusion

that the defect was in long-term HSC self-renewal. Finally,

at short time points after transplantation(Adams et al.,

2006), the levels of chimerism were equivalent (Figure 2H),

suggesting that the long-term HSC renewal defects

observed were unlikely to be a consequence of impaired

homing.

Loss of b-Catenin Leads to Altered Characteristics
of Leukemia Progression In Vivo
The influence of b-catenin on HSC function and the many

parallels between the regulation of stem cells and cancer

cells (Beachy et al., 2004; Reya et al., 2001; Wu et al.,

2007) suggested that b-catenin may also affect leukemia

formation. To test this we utilized a mouse model of leuke-

mogenesis involving the BCR-ABL fusion protein. In

humans, translocations involving the BCR and ABL genes

lead to both CML and ALL (Ren, 2005). This disease can

be recapitulated in mice by retrovirally introducing the

p210 form of BCR-ABL into hematopoietic progenitors

and transplanting these cells into lethally irradiated mice

(Daley et al., 1990; Pear et al., 1998; Witte, 2001). We

used this model to test the requirement of b-catenin in

leukemia progression.

c-kit-enriched bone marrow cells from control or

b-catenin�/� mice were infected with control retroviruses

or viruses carrying BCR-ABL and transplanted (Figure 3A).

Forty-eight hours after infection, control and b-catenin�/�

cells expressed BCR-ABL transcripts (Figure 3B). In addi-

tion, the frequency of infected cells was similar in control

and knockout cultures as determined by an IRES-GFP

marker carried by the virus (data not shown). Mice trans-

planted with control BCR-ABL-infected cells became

sick 20–24 days after transplantation (Figure 3C). In con-

trast, mice transplanted with b-catenin�/� BCR-ABL-

infected cells showed a significant delay in onset of

disease (75 days versus 46 days; Figures 3C and 5C).

We first analyzed the leukemias induced by BCR-ABL-

infected control cells and found that a majority of them

resembled CML. These leukemias were associated with

weight loss, lung hemorrhaging, and significant spleno-

megaly (Figure 3E) compared to vector-infected controls

(Figure 3D). Closer histological examination revealed that

the lung and the liver were extensively infiltrated with leu-

kemic cells, consistent with CML-like disease (Figure 4,

top and middle rows; black arrowheads indicate leukemic

cells).

Mice transplanted with BCR-ABL-infected b-catenin�/�

cells displayed a markedly different course of disease.

Several displayed paralysis of the hind legs, indicative of

tumors in the spinal cord (Figure 3F, left). These mice did

not display the lung hemorrhaging nor the extent of

splenomegaly observed with BCR-ABL-infected control

transplants (Figure 3F, middle and right panels), and
Can
they lacked the extensive infiltration of the lungs and liver

(Figure 4, bottom row).

Loss of b-Catenin Impairs In Vivo Progression
of CML but Allows Normal Development of ALL
To determine the identity of the leukemic cells in mice

transplanted with BCR-ABL-infected control and knock-

out cells, we carried out histological analysis of the spleen.

This revealed extensive infiltration of both immature and

mature granulocytes in control transplanted mice (Fig-

ure 5A, middle). In contrast, the majority of mice trans-

planted with BCR-ABL-infected b-catenin�/� cells dis-

played lymphocytic cell infiltrates (Figure 5A, right).

FACS analysis confirmed that the majority of leukemic cells

in control mice were granulocytes (Figure 5B, upper panel);

in contrast, b-catenin�/� transplanted mice showed a sig-

nificant expansion of B cells (Figure 5B, lower panels)

that were IgM� (data not shown), indicating that the leuke-

mia resembled pre-B-ALL. Cumulative analysis of four

independent groups of transplants revealed that the ma-

jority of mice (82.6%, 19/23) transplanted with BCR-

ABL-infected control cells displayed a CML-like disease

and only a few mice (17.4%, 4/23) succumbed to ALL (Fig-

ure 5C, bottom row). In contrast only 19% (4/21) of mice

transplanted with BCR-ABL-infected b-catenin�/� cells

succumbed to CML (Figure 5C, top row; Figure 5D). Im-

portantly, at early time points the level of chimerism of

BCR-ABL-infected control and b-catenin null cells was

equivalent, suggesting that the reduced frequency of

CML was unlikely to be due to a homing or engraftment

defect (Figure S5). The frequency of BCR-ABL-positive

clones with unique integration sites was also similar in

the BCR-ABL-infected control or b-catenin null cells, sug-

gesting that an early defect in the presence of leukemia-

initiating clones was unlikely (Figure S6A). Furthermore

the leukemias that did fully form in both control and b-cat-

enin null samples appeared to be oligoclonal, suggesting

that an insertional mutagenesis event, which can some-

times act to cooperatively lead to oncogenesis, was un-

likely to be the basis of the observed CMLs (Figure S6B).

Interestingly, the absence of b-catenin did not hinder

the progression to ALL, which in the absence of CML

became the predominant disease in 81% (17/21) (Fig-

ures 5C and 5D) of the mice transplanted with BCR-

ABL-infected knockout cells. Further, the ALLs could be

serially transplanted, confirming that they had intact re-

newal capacity in vivo (Figures S7A–S7C). b-catenin ex-

pression was undetectable in leukemias from b-catenin

null cells (Figures S8A–S8C), making it unlikely that they

were progressing normally because of not having deleted

b-catenin. These data cumulatively indicate a differential

requirement for b-catenin in BCR-ABL-induced CML

and ALL.

Loss of b-Catenin Impairs Self-Renewal of CML
Stem Cells
We next investigated the cellular basis for the impaired

ability of b-catenin�/� cells to allow CML progression

in vivo. To test whether knockout cells displayed
cer Cell 12, 528–541, December 2007 ª2007 Elsevier Inc. 531
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Figure 3. Loss of b-Catenin Leads to Altered Characteristics of Leukemia Progression In Vivo

(A) Experimental strategy to model BCR-ABL-induced leukemia. c-kit-enriched cells were isolated from control or b-catenin knockout mice and

infected with BCR-ABL retroviruses for 48 hr prior to transplantation of 2–5 3 105 cells into lethally irradiated recipient mice. LTR, long terminal repeat.

(B) Control and b-catenin knockout c-kit-enriched bone marrow cells were infected with either vector control or BCR-ABL retroviruses, and expres-

sion levels of BCR-ABL were analyzed by real-time PCR. Results were normalized to the housekeeping gene b-actin. Data are an average of five

independent samples. Error bars represent SEM.

(C) Survival curve of mice receiving BCR-ABL-infected control (+/+) or b-catenin knockout (�/�) c-kit-enriched bone marrow cells. Data shown are

from one of four independent experiments, with 7–9 mice in each experimental group per experiment.

(D–F) Gross examination of mice transplanted with vector-infected control, BCR-ABL-infected control, and b-catenin knockout cells. A majority of

mice transplanted with BCR-ABL-infected control cells became weak but did not develop paralysis, unlike several of those transplanted with knock-

out cells (left panel). Appearance of lung in mice transplanted with vector-infected control, BCR-ABL-infected control, or BCR-ABL-infected knockout

cells (middle panel). Relative splenomegaly of mice transplanted with vector-infected control, BCR-ABL-infected control, or b-catenin knockout cells

(right).
decreased survival following BCR-ABL infection, control

and b-catenin�/� c-kit-enriched cells were infected with

control vector or BCR-ABL, and survival analyzed

(Figure 6A). BCR-ABL led to increased survival equiva-

lently in both the control and b-catenin�/� cells

(Figure 6B). To test whether the loss of b-catenin could

lead to reduced CML formation by reducing long-term

propagation of cancer cells, we first carried out a serial re-

plating assay, which provides an indication of cancer cell
532 Cancer Cell 12, 528–541, December 2007 ª2007 Elsevier In
self-renewal in vitro. Both control and knockout cells

formed equal numbers of colonies following vector and

BCR-ABL infection in the first plating (Figures 6C and

6D). By the second plating, the BCR-ABL-infected control

cells had an increased ability to give rise to new colonies

as compared to vector-infected cells (Figure 6C). In con-

trast, the ability of BCR-ABL to induce colony formation

was reduced to control levels in the absence of b-catenin

(Figure 6D). Further, the control BCR-ABL cells continued
c.
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Figure 4. Loss of b-Catenin Leads to an Altered Pattern of Leukemic Cell Infiltration in the Lung and Liver

Hematoxylin/eosin staining of tissue sections from lung (left panels) and liver (right panels) of mice transplanted with vector-infected control,

BCR-ABL-infected control, or BCR-ABL-infected knockout cells. Arrowheads point to infiltration of leukemic cells into tissues. Mice transplanted

with BCR-ABL-infected b-catenin knockout cells show either reduced infiltration (bottom row left [lung], black arrowhead) or a different pattern of

infiltration (bottom row right [liver], black arrowhead). The scale bar represents 100 mm.
to generate more colonies than control vector-infected

cells in the third (2.5-fold) and fourth platings (3.4-fold)

(Figure 6C). Interestingly, by the third plating, there ap-

peared to be colonies in the knockout cultures infected

with BCR-ABL as well (Figure 6D); however, these colo-

nies were morphologically different from the myeloid col-

onies in the control cultures and were composed primarily

of B cells (Figure 6E). This result mirrored the in vivo finding

that the b-catenin�/� cells can be transformed along the B

lineage and suggested that b-catenin is critically needed

for the increased self-renewal capacity bestowed by

BCR-ABL on hematopoietic stem cells to allow transfor-

mation to occur along the myeloid lineage.

To more definitively test whether the CML impairment in

the absence of b-catenin was due to a defect in cancer

stem cell self-renewal in vivo, we isolated GFP+KLS cells

from control or b-catenin�/� primary CML and trans-

planted them into secondary recipients. These cells have

been shown previously to successfully propagate CML

formation (Hu et al., 2006), thus broadly fitting the criteria
Can
for CML stem cells. Upon transplantation, CML stem cells

from control mice successfully propagated leukemia such

that 65% of the recipients succumbed to the disease

(Figure 6F). In contrast, none of the recipients transplanted

with CML stem cells from the b-catenin�/� mice devel-

oped the disease during the same time period. These

data are consistent with the in vitro replating data and in-

dicate that the loss of b-catenin impairs CML progression

by reducing the self-renewal ability of CML stem cells.

We also carried out control experiments to rule out the

possibility that the impaired CML progression was due to

an altered frequency of cells that could serve as targets

for BCR-ABL. FACS analysis revealed equivalent fractions

of lineage-negative, long-term and short-term cells in both

the control and b-catenin knockout c-kit+ population

(Figures S9A–S9C). We also found that control and b-cat-

enin knockout cells retained similar frequencies of lym-

phoid and myeloid lineage-committed cells following in-

fection with BCR-ABL (Figure S9D). Further, when purified

KLSF� cells were used to equalize the target population
cer Cell 12, 528–541, December 2007 ª2007 Elsevier Inc. 533
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Figure 5. Loss of b-Catenin Impairs In Vivo Progression of CML but Allows Normal Development of ALL

(A) Histologic appearance of leukemic cells in spleens of the majority of mice transplanted with BCR-ABL-infected control and b-catenin knockout

cells. Arrowheads point to an increased frequency of immature and mature granulocytic cells in the spleens of mice transplanted with BCR-ABL-

infected control cells, and increased lymphocytic cells in the spleens of mice transplanted with BCR-ABL-infected b-catenin knockout cells. Scale

bar represents 100 mm.

(B) Bone marrow cells from mice receiving BCR-ABL-infected control or b-catenin knockout cells were analyzed by flow cytometry for increased

presence of granulocytic (Mac-1+Gr-1+ cells shown in upper panels) or lymphocytic lineages (B220+ cells shown in lower panels).

(C) Cumulative data from four experiments indicating type of leukemia induced by BCR-ABL in mice transplanted with control or b-catenin knockout

(�/�) cells. Each circle represents an individual mouse. CML, chronic myelogenous leukemia; ALL-B, B cell acute lymphocytic leukemia; ALL-T, T cell

acute lymphoblastic leukemia.

(D) Distribution of CML and ALL induced by BCR-ABL when using control or b-catenin knockout c-kit-enriched cells. *p = 0.005 (t test from four

experimental groups).
534 Cancer Cell 12, 528–541, December 2007 ª2007 Elsevier Inc.
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for BCR-ABL infection (Figure S9E), control cells gave rise

to leukemia in 100% of the mice (CML in 7/8 and B-ALL in

1/8), while knockout cells generated significantly fewer

CMLs (12.5%, only one case of CML). Finally, reintroduc-

tion of activated b-catenin complemented the defect in

CML formation (Figures S10A–S10C). These data cumula-

tively indicate that the reduced ability of BCR-ABL to cause

CML in the absence of b-catenin is unlikely to be due to dif-

ferences in target populations infected between wild-type

and mutant mice.

Differential Wnt Reporter Activity
in BCR-ABL-Induced CML and ALL
We next investigated whether the differential dependence

of CML versus ALL on b-catenin was due to differential uti-

lization of the Wnt pathway in the two leukemias. We thus

generated a lentiviral Wnt reporter, BATRED (see Experi-

mental Procedures), that would fluoresce red upon activa-

tion of a Wnt signal and could be detected in the GFP-

expressing BCR-ABL-infected leukemia cells. In control

experiments, the BATRED reporter responded to b-catenin

activation as expected (Figure S11). Reporter activity

could be detected in 42% (188/448) of the CML cells iso-

lated from control mice (Figure 7A). In some CML samples

the reporter activity was particularly high in some cells and

mid to low in other cells, but consistently above back-

ground control levels. In contrast, BATRED activity was

undetectable or significantly lower in the cells derived

from ALL samples (Figure 7A). As a control, we confirmed

that the BATRED reporter had integrated into both ALL and

CML cells (Figure 7B). Additionally, the BATRED reporter

could be activated in ALL cells when Wnt signaling was

forcibly turned on using lithium chloride (Figure 7C), sug-

gesting it was unlikely that the reporter was silenced pref-

erentially in ALL cells. These data indicate that Wnt

reporter activity is higher in BCR-ABL-induced CML com-

pared to ALL. This differential utilization is consistent with

the differential requirement for b-catenin in CML and ALL.

BCR-ABL-Induced Phosphorylation Is Reduced
in the Absence of b-Catenin
Finally, we investigated the specific molecular changes

that occur with the loss of b-catenin that may contribute

to the impaired ability of BCR-ABL to transform cells along

the myeloid lineage. We first examined whether the b-

catenin�/� cells have reduced levels of genes that confer

myeloid identity but did not find any changes in the ex-

pression of CEBPalpha, Id1, or Pax5 (Figure S12). Lack

of b-catenin also did not significantly change the expres-

sion of cyclinD1, cyclinD2, and c-Myb (data not shown).

It has previously been shown that CML progression, but

not ALL progression, is impaired in the absence of Stat5a

(Ye et al., 2006; Sexl et al., 2000), which is normally phos-

phorylated and thereby activated by BCR-ABL. We thus

tested if phosphorylated Stat5a was reduced in the

absence of b-catenin, and found that p-Stat5a was re-

duced by approximately 4-fold in the b-catenin null cells

following BCR-ABL transduction (Figures 8A and 8B).

While there was some reduction in total Stat5 protein as
Can
well, it was not as marked as the reduction in phosphory-

lated Stat5 and did not appear to be responsible for the re-

duced levels of p-Stat5a observed (Figures 8C and 8D).

That the loss of Stat5a leads to a differential impact on

CML and ALL together with our data that loss of b-catenin

reduces BCR-ABL induced p-Stat5a provides support, at

a molecular level, for the idea that b-catenin is differentially

required in CML and ALL. In addition to the phosphoryla-

tion defect of Stat5a, we also observed a global decrease

in protein tyrosine phosphorylation in established CML,

but not ALL, derived from b-catenin�/� cells (2.6- to 4-

fold reduction; Figure 8E). While the transcriptional levels

of BCR-ABL were relatively equivalent in the leukemias

from control and b-catenin�/� cells (Figure 8F), the levels

of BCR-ABL protein was significantly reduced in the ab-

sence of b-catenin in CML cells but not ALL cells (Fig-

ure 8G). In light of the fact that BCR-ABL and b-catenin

can form a complex in vivo (Coluccia et al., 2007; and

data not shown), our data raise the intriguing possibility

that the loss of b-catenin leads to reduced levels of

BCR-ABL and reduced phosphorylation of relevant sub-

strates; this reduced activation of downstream targets

may lead to a consequent decrease in CML self-renewal

ability and progression.

DISCUSSION

Our studies indicate that deletion of b-catenin in the hema-

topoietic system impairs normal HSC function and leuke-

mia progression in vivo. During normal hematopoiesis,

while the loss of b-catenin did not affect the initial estab-

lishment of HSCs and hematopoietic differentiation, it

led to a clear reduction of long-term maintenance as

assayed by transplantation. These data overall strengthen

the findings that retroviral modulation of Wnt signaling in

HSCs can influence proliferation and reconstitution in

mice (Reya et al., 2003; Willert et al., 2003; Baba et al.,

2005, 2006) as well as the observation that delivery of

Wnt protein can enhance human HSC reconstitution in

a xenograft model (Murdoch et al., 2003). However, an

IFN-inducible b-catenin�/� mouse was reported to have

no defects in the hematolymphoid or any other system

(Cobas et al., 2004). It is possible that the differences in

phenotypes observed may be due to the approach by

which b-catenin was deleted. Using IFN induction to in-

duce deletion in adulthood may set up a different context

for testing requirements than using a transgenic in which

cre recombinase is driven by a promoter starting in embry-

onic life, as was done in our case as well as in experiments

demonstrating a requirement for b-catenin in develop-

ment of multiple major organs (Brault et al., 2001; Catte-

lino et al., 2003; Dessimoz et al., 2005; Xu et al., 2003).

One of the most important findings that we report here is

that loss of b-catenin affects myeloid leukemia progres-

sion in vivo. Several studies have suggested that Wnt sig-

naling is active in many leukemic cell lines and patient

samples (reviewed in Reya and Clevers, 2005). However,

whether this pathway is required for in vivo leukemia pro-

gression was unknown. Our data clearly demonstrate that
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Figure 6. Loss of b-Catenin Impairs BCR-ABL-Induced Renewal of CML Stem Cells
(A) A schematic of the strategy to determine relative survival and replating efficiency after BCR-ABL infection in control and b-catenin knockout cells.

(B) c-kit-enriched cells from control or b-catenin knockout mice were infected with vector or BCR-ABL and stained with annexin-V and 7-AAD.

Annexin-V+7-AAD� cells were quantified to determine frequency of apoptotic cells. Results are representative of four independent samples.
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Cancer Cell

b-Catenin in Normal and CML Stem Cell Renewal
Figure 7. Differential Wnt Reporter

Activity in CML versus ALL

(A) Leukemic cells from BCR-ABL-induced

CML or ALL were sorted for GFP and then in-

fected with a lentiviral Wnt reporter expressing

dsREd (BATRED) upon Wnt activation. Cyto-

spins were prepared 48 hr later and observed

by immunofluorescence microscopy.

(B) Genomic DNA was extracted from Wnt-re-

porter-infected CML or ALL cells, and viral inte-

gration was checked by PCR analysis using

specific primers designed to amplify dsREd.

The Wnt reporter plasmid served as a positive

control. Data shown in both (A) and (B) are rep-

resentative of three independent experiments.

(C) GFP+ leukemic cells from b-catenin�/� ALL

were sorted, infected with the BATRED re-

porter virus, and treated with control media or

1 mM lithium chloride for 48 hr. Cells were

then cytospun, and reporter activity was ana-

lyzed by immunofluorescence. Data are repre-

sentative of two independent experiments.

In (A) and (C), the scale bar represents 10 mm

and 3 mm, respectively.
deletion of b-catenin leads to a reduced ability of BCR-

ABL to induce CML in vivo. Further we found that the

impaired CML incidence could be rescued by ectopic

b-catenin expression (Figure S10), supporting the notion

that the loss of b-catenin directly impacts CML progres-

sion. Interestingly, only a low dose of b-catenin was effec-

tive in this rescue, while a high dose appeared to interfere

with leukemogenesis. These data indicate that the precise

levels of b-catenin are critical to determining its influence

on hematopoietic cells, and they may help explain the

data observed with transgenic mice overexpressing high

levels of b-catenin in which an expansion of phenotypic

HSCs is followed by loss of differentiated hematopoietic

cells (Kirstetter et al., 2006; Scheller et al., 2006).

Our data also provide insight into the cellular and molec-

ular basis for impaired CML progression in the absence of

b-catenin. At a cellular level, the serial replating and CML

serial transplantation assays suggest that the decreased

progression of CML is due to a reduced ability of BCR-

ABL to sustain long-term renewal of CML stem cells in

the absence of b-catenin. At a molecular level, our data

show that the loss of b-catenin reduces the levels of

BCR-ABL and impairs phosphorylation of proteins in

BCR-ABL-induced CML. The fact that the loss of b-catenin
Can
reduces phosphorylation of Stat5a and other substrates

raises the possibility that Wnt signaling may regulate

CML progression by allowing the maintenance of normal

levels of BCR-ABL protein, which in turn phosphorylates

Stat5a and other substrates needed for optimal transfor-

mation along the myeloid lineage.

Remarkably, while CML formation was reduced in the

absence of b-catenin, ALL formation could proceed rela-

tively unimpaired. It has been proposed that CML and

ALL may arise from distinct cells of origin. Specifically,

some data indicate that the cell of origin for CML is

a stem cell (Li et al., 1999; Takahashi et al., 1998), while

the cell of origin for ALL is a committed B cell precursor

(Li et al., 1999). In our experiments presented here, we

find that CML occurs almost exclusively when KLSF cells

are used as the cell of origin (Figure S9). Furthermore, we

find that when progenitor B220+IgM� cells are used as the

cell of origin, the leukemias that are generated are B-ALL

(Figure S13). These data indicate that CML is the predom-

inant disease when starting with an uncommitted HSC-

enriched fraction and that B-ALL is predominant when

committed lymphoid progenitor cells are targeted. The

fact that we do not observe significant ALL from BCR-

ABL-infected HSCs suggests that the cells in which
(C and D) Long-term serial replating. c-kit-enriched control or b-catenin�/� cells were infected with vector or BCR-ABL, and 5000 GFP-positive cells

were sorted into wells containing methylcellulose media to assess primary colony formation. Colony numbers were counted on days 8–10. Cells were

then harvested and counted, and 5000 cells were replated for a second, third, and fourth time, and colonies were counted on days 8–10 after each

replating. White bars represent B lineage colonies. Results shown are an average of three independent experiments. Error bars show SEM.

(E) BCR-ABL-infected control and b-catenin�/� colonies were collected after the third and fourth plating and stained with the B cell marker B220. The

plot shown is a representative FACS from the fourth plating.

(F) In vivo self-renewal assay for CML stem cells. Irradiated recipient mice were transplanted with 10,000 KLSGFP+ cells (CML stem cells) sorted from

control or b-catenin knockout CMLs. Survival curves show the frequency of recipients succumbing to disease after receiving KLS cells from wild-type

CML (solid line) or b-catenin null CML (dashed line) stem cells (total number of mice transplanted = 12). In (B), (C), and (D), error bars represent SEM.
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Figure 8. BCR-ABL-Induced Phosphorylation of Stat5a Is Reduced in the Absence of b-Catenin

(A and C) c-kit enriched control or b-catenin�/� cells were infected with BCR-ABL for 48 hr. Infected cells (GFP positive) were sorted and cultured for

another 3–4 days, and then cytospins were prepared and stained with indicated antibodies. Data are representative of three independent experi-

ments. In (A) and (C), the scale bar represents 10 mm. (B and D) Quantification of fluorescence intensities/cell for phosphorylated (B) and total Stat5a

(D) using Metamorph software. In control cells, phosphorylation of Stat5a was significantly induced following BCR-ABL transduction (p = 0.003). In

contrast, BCR-ABL transduction in b-catenin�/� cells did not induce Stat5a phosphorylation over vector and showed reduced phosphorylation com-

pared to BCR-ABL-infected control cells (p = 0.008). (E) Relative levels of protein tyrosine phosphorylation in CML and ALL cells from control or

b-catenin�/� leukemias. GFP+ leukemia cells from CML or ALL of each genotype were sorted, and protein lysates were analyzed by western blotting

with an anti-phosphotyrosine antibody. (F) Real-time PCR analysis of BCR-ABL mRNA levels in control and b-catenin�/� leukemia cells. (G) Relative

levels of BCR-ABL protein in CML and ALL from control or b-catenin�/� leukemias. GFP+ leukemia cells from CML or ALL of each genotype were

sorted, and protein lysate was analyzed by western blotting with an anti-abl antibody. Data are representative of two to three independent experi-

ments. In (B), (D), and (F), error bars represent SEM.
the leukemia initiates may determine the outcome of the

leukemia subtype. This is similar to patients in whom the

BCR-ABL translocation can be found in multiple lineages

(suggesting a stem cell hit) but only CML occurs. Thus it is

possible that the requirement for b-catenin is different in

the two leukemias precisely because of the different tran-

scriptional contexts in the two different cells of origin. If
538 Cancer Cell 12, 528–541, December 2007 ª2007 Elsevier I
this is the case, the low frequency of B-ALL from KLSF

may indicate a low level of contamination of progenitors

in the KLSF fractions or some level of differentiation during

the BCR-ABL infection process in vitro. On the other hand,

the fact that we do observe some frequency of B-ALL

even when starting with KLSF cells may indicate that

ALL can be initiated in either uncommitted or committed
nc.
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progenitors. If this is the case, it is possible that the differ-

ential need for b-catenin is not because the initiating cell is

different for CML and ALL but because the leukemias are

ultimately propagated along different lineages, which

have different transcriptional contexts.

Several genetic changes have been shown to lead to

altered ratios of CML and ALL. For example, the combined

loss of the src kinases Lyn, Hck, and Fgr preferentially

reduces the incidence of B-ALL relative to CML (Hu

et al., 2004), while reduced activity of the tumor suppres-

sor Arf preferentially accelerates ALL formation (Williams

et al., 2006). Insight into the molecular changes that lead

to a preferential reduction of CML incidence has come pri-

marily from studies of mutations of the abl kinase domain.

Specifically, mutations in the SH2 domain as well as in the

Grb2-binding domain of BCR-ABL lead to reduced forma-

tion of CML but allow normal progression of ALL (Million

and Van Etten, 2000; Roumiantsev et al., 2001). However,

downstream pathways or cascades that may mediate the

differential effects of these mutations remain less well elu-

cidated. This raises the possibility that these mutations

may affect the ability of BCR-ABL to influence the Wnt

pathway. Alternatively, Wnt signaling may be an indepen-

dent modulator of the differential signaling requirements

between CML and ALL progression.

Overall, our work supports data showing that Wnt

signaling is active in and important for human CML. Specif-

ically it has been shown that granulocyte-macrophage pro-

genitors from chronic myelogenous leukemia patients and

blast crisis cells from patients resistant to therapy display

activated Wnt signaling (Jamieson et al., 2004). Addition-

ally, inhibition of b-catenin through ectopic expression of

axin decreases the replating capacity of leukemic cells,

suggesting that human chronic myelogenous leukemia

precursors are dependent on Wnt signaling for growth

and renewal in vitro. Our data using a mouse model of

BCR-ABL-induced CML are consistent with these findings

and demonstrate that progression of CML in vivo is also

critically dependant on intact b-catenin. The work in the

human system together with that in our mouse model

collectively suggests that Wnt signaling could prove to be a

relevant therapeutic target. Thus, in the long-term, it will be

important to explore whether blocking Wnt signaling either

alone or together with inhibition of BCR-ABL kinase activity

may be an effective avenue to halt CML progression.

EXPERIMENTAL PROCEDURES

Mice

The loxP-b-catenin and Vav-cre transgenic mice used were in the

C57Bl/6J background. Transplant recipients (C57Bl/Ka CD45.1)

were 8–10 weeks of age. All mice were bred and maintained on acid-

ified water in the animal care facility at Duke University Medical Center.

All animal experiments were performed according to protocols

approved by the Duke University Institutional Animal Care and Use

Committee.

HSC Isolation and Analysis

Isolation of HSCs from bone marrow and their transplantation for

in vivo analysis of function were performed as described (Domen

et al., 2000; Duncan et al., 2005). For the competitive repopulation
Can
unit (CRU) assay, 10, 40, and 50 sorted KLSCD34� control or

b-catenin�/� bone marrow cells were mixed with 200,000 competing

bone marrow cells and injected into lethally irradiated CD45.1 recipi-

ents. Multilineage repopulation was assessed at 10 weeks after trans-

plantation. Secondary limiting-dilution competitive repopulation anal-

ysis was carried out as described (Ema et al., 2005). Whole bone

marrow cells were isolated from primary recipients originally trans-

planted with control or b-catenin�/� KLSCD34� cells for 21 weeks

and transplanted into 5–7 recipients at each dose for each genotype

(10,000, 40,000, 80,000, and 160,000 cells/recipient). Peripheral blood

cells of the secondary recipients were analyzed 10 weeks after trans-

plantation. CRU was calculated using L-Cal software (StemCell Tech-

nologies). To assess homing in vivo, 2 3 106 bone marrow cells from

control or b-catenin�/� mice were transplanted into lethally irradiated

45.1 recipients (4 mice/group). The recipient mice were sacrificed 6 hr

posttransplantation, and the presence of donor cells was analyzed by

FACS. For leukemia stem cell self-renewal analysis in vivo, CML stem

cells were isolated from CMLs of each genotype as described before

(Hu et al., 2006). To retrieve sufficient numbers of CML stem cells

(from pooled leukemias) to cause secondary disease, the primary

CML was induced with high numbers of KLSF cells (50,000 at 50%

transduction efficiency). Ten thousand freshly isolated CML stem cells

were transplanted into lethally irradiated recipient mice together with

200,000 competitive whole bone marrow cells (n = 6 per group).

Construction and Use of Lentiviral Wnt Reporter

To construct a lentiviral Wnt reporter that would fluoresce red upon

activation of the Wnt signal, we used the reporter elements of the

BATGAL construct in which seven tandem Lef/Tcf sites were cloned

upstream of the minimal promoter TATA box of the Siamois gene

(Maretto et al., 2003). These ‘‘BAT’’ elements were cloned in front of

a ds‘‘RED’’.T4 element (Bevis and Glick, 2002). Second, the XmaI and

BsrG1 fragment of lenti-OT-GFP (Reya et al., 2003) was replaced

by the seven tandem Lef/Tcf sites, minimal promoter TATA, and

dsRED.T4, resulting in the ‘‘BATRED’’ reporter. For detecting Wnt sig-

naling by dsREd lentiviral Wnt reporter, GFP-positive leukemia cells

from CML or ALL mice were sorted and infected with lentiviral

reporter for 48 hr, and cytospins were generated. Confocal images

were obtained with a Zeiss 410 Axiovert Microscope.

Analysis of Diseased Mice

After transplantation, recipient mice were evaluated daily for signs of

morbidity, weight loss, failure to thrive, and splenomegaly. Premorbid

animals were sacrificed and relevant tissues harvested and analyzed

by flow cytometry and histopathology. For flow cytometric analysis,

leukemic cell populations were incubated with antibodies to murine

CD3, B220, Gr-1, and Mac-1 (eBiosciences) and analyzed on FAC-

Vantage SE (BD) with FlowJo software (Tree Star, Inc). Mice that

died prior to analysis (three in the control group, and one in the �/�
group) were excluded from Figure 4C.

Cell Culture and Methylcellulose Colony Formation

For liquid culture, control or BCR-ABL-infected c-kit-enriched cells

were sorted directly into 96-well U bottom plate with the same medium

used for prestimulation of cells (Supplemental Experimental Proce-

dures); for methylcellulose assays, 1000–5000 GFP-positive cells

were sorted directly into 12-well plates with complete methylcellulose

medium (StemCell Technologies, catalog number M3434). Colony

numbers were initially counted 8–10 days after plating. Subsequently,

cells were harvested and counted, and 1000–5000 cells were replated

into new 12-well plates. Apoptosis assays were performed by staining

cells with annexin-V and 7-AAD (BD, Biosciences).

Immunofluorescence Staining

Vector or BCR-ABL-infected c-kit-enriched cells were sorted for GFP

by FACS and cytospun, and fixed in 4% paraformaldehyde. Primary

antibodies used were goat anti-phosphorylated Stat5a (sc-11761,

Santa Cruz) or rabbit anti-Stat5a (sc-1081, Santa Cruz), and secondary
cer Cell 12, 528–541, December 2007 ª2007 Elsevier Inc. 539
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antibodies were rabbit anti-goat-PE or donkey anti-rabbit-PE. DAPI

(Molecular Probes) was added as a nuclear counter-stain.

Supplemental Data

The Supplemental Data include Supplemental Experimental Proce-

dures and thirteen supplemental figures and can be found with

this article online at http://www.cancercell.org/cgi/content/full/12/6/

528/DC1/.
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